已知函数fx=2根号3sinxcosx+2sin方x-1,x∈R.求函数fx的最小正周期和单调递增区间

2025-02-06 15:59:55
推荐回答(1个)
回答1:

f(x)=2√3sinxcosx+2sin^2x-1=√3sin2x-cos2x=2sin(2x-π/6)
最小正周期T=π ,单调递增区间:2kπ-π/2<2x-π/6<2kπ+π/2, :kπ-π/6将函数y=2sin(2x-π/6)的图像上个点的纵坐标保持不变,横坐标缩短到原来的½,得y=2sin(4x-π/12)
再把所得的图像向左平移π/6个单位长度,得y=2sin(4x-π/12-π/6)=2sin(4x-π/4)=g(x)
求函数y=gx在区间【-π/6,π/12】上的值域
2kπ-π/2<4x-π/4<2kπ+π/2, kπ/2-π/16-9π/16g(-π/16)=-2(最小)f(-π/6)=-0.26, f(π/12)=0.26
y=gx在区间【-π/6,π/12】上的值域[-2,0.26]