1/n-1/(n+3)=(n+3)/n(n+3)-n/n(n+3)=3/n(n+3),故1/n(n+3)=[1/n-1/(n+3)]/3
则原式=(1/5-1/8)/3+(1/8-1/11)/3+……(1/2009-1/2012)/3
=(1/5-1/8+1/8-1/11……+1/2009-1/2012)/3
=(1/5-1/2012)/3
=2017/30180
3(1/5-1/8+1/8-1/11=1/11-1/14+.......+1/2009-1/2012)