u^x求导公式底数必须是常数
x^n同理指数必须是常数
所以两个公式皆不能用
y=(sinx)^x=e^(xln|sinx|)
再用复合函数求导
要不然就用取对数求导法
----------------------------
复合函数求导
就是把复合函数拆成一系列简单函数
各自求导然后相乘
这个题外层函数y=u^x求导的时候也是要用基本公式的
而(a^x)'=(a^x)lna要求底数a是常数(公式后面有括号说明吧)
底数不是常数就不能用
而这个u=sinx本身不是常数
而是一个中间变量,变量...
所以不行
基本公式不能乱用哦~
-----------------------------
方法1
两边同时取以e为底的对数
lny=xlnsinx
两边同时对x求导数
含有y的把y看成关于x的函数,复合函数求导
(1/y)*y'=1*lnsinx+x*(1/sinx)*(sinx)'
化简即y'/y=lnsinx+xcotx
解出y'来,再把右边的y带入
y'=y*(lnsinx+xcotx)=(sinx)^x*(lnsinx+xcotx)
方法2
写成e^xlnsinx再求导(略)
也就这2种方法了吧
这是幂指函数的求导问题,
1。可以使用隐函数的对数求导法,即对等式两端同时取对数,求导后再代回来。
2。使用偏导数里面的链式法则。
3。使用全微分会更方便。
楼主的误区在于对复合函数的理解
而复合函数最关键的在于要明白是怎样复合的
比如sin(lnx)是两层复合,即,先对数后正弦
而 (sinx)^x不是简单的复合
也就是说,不能理解成先正弦后。。。。。
前面的方法有问题。这类问题的通用解法是,对
对数
求导。
lny
=
sinx
*
ln
x
两边求导,
y'/
y
=
cosx
*
ln
x
+
sinx
/
x
y'
=
(cosx
*
lnx
+
sinx/x)
*
y
=
(cosx
*
lnx
+
sinx/x)
*
x^sinx
类似的,
y
=
x^x
求导,
lny
=
x*lnx
y'/y
=
lnx
+
1
y'
=
(lnx
+
1)
*
x^x
我想你一定是把a^x的导数与x^a的导数概念弄混了.
这道题开始应该用a^x的导数来算.
好象(a^x)'=alnx.查查求导公式吧..
因为底数和指数都是变量
所以不能直接求导
lny=xlnsinx
(1/y)*y'=1*lnsinx+x*(1/sinx)/(sinx)'
=lnsinx+x*(cosx/sinx)
=lnsinx+xcotx
所以y'=y*(lnsinx+xcotx)
==(sinx)^x*(lnsinx+xcotx)