An=1/(1+2+……+n)
1+2+…+n=n*(n+1)/2
An=2/[n*(n+1)]=2*[1/n - 1/(n+1)]
所以:1+1/1+2+1/1+2+3+……+1/1+2+……+1999
=2*(1/1-1/2+1/2-1/3+…+1/1999-1/2000)
=2*(1-1/2000)
=1999/1000
an=1/[n(n+1)/2]=2/n(n+1)=2(1/n-1/(n+1))
则原式=2(1-1/2+1/2-1/3+...+1/1998-1/1999+1/1999-1/2000)
=2*(1-1/2000)
=2*1999/2000
=1999/1000