f(x)=cosx^2+ √3*sinxcosx+1
=0.5(2cosx^2-1)+√3*sinxcosx+1.5
=0.5cos2X+0.5√3sin2X+1.5
=sin(2X+π/6)+1.5
因此最小正周期为π,单调递增区间为-π/2+kπ <= 2X+π/6 <= π/2+kπ
即[-7π/12+kπ/2 ,5π/12+kπ/2]
解:f(x)=cosx^2+ 根号3sinxcosx+1
=(1/2)cos2x+(根号3/2)sin2x+3/2
=sin(2x+π/6)+3/2
所以函数的周期为π,
单调增区间为()