(1)、f(x)=sin²x+2sinxcosx+3cos²x
=(sin²x+cos²x)+sin2x+(2cos²x-1)+1
=sin2x+cos2x+2
=√2(√2/2*sin2x+√2/2cos2x)+2
=√2sin(2x+π/4)+2
最小正周期为:T=2π/2=π
单调增区域为:-π/2+2kπ≤2x+π/4≤π/2+2kπ,k为整数
-3π/8+kπ≤x≤π/8+kπ,k为整数
即增区间为:[-3π/8+kπ,π/8+kπ],k为整数
(2)、当sin(2x+π/4)=1时,f(x)有最大值√2+2
此时:2x+π/4=π/2+2kπ,k为整数
即x=π/8+kπ,k为整数
则x的取值集合为:{x|x=π/8+kπ},k为整数
(3)、若x∈[0,π/2]
则2x+π/4∈[π/4,5π/4]
∴-√2/2≤sin(2x+π/4)≤1
∴1≤√2sin(2x+π/4)+2≤√2+2
即值域为:[1,√2+2]
f(x)=sinx(sinx cosx)=sinx方 sinxcosx=-cosx sinx =根号倍的sin(x-π/) 所以最小正周期为π,最大值为根号